Fitting magnetic field gradient with Heisenberg-scaling accuracy
نویسندگان
چکیده
The linear function is possibly the simplest and the most used relation appearing in various areas of our world. A linear relation can be generally determined by the least square linear fitting (LSLF) method using several measured quantities depending on variables. This happens for such as detecting the gradient of a magnetic field. Here, we propose a quantum fitting scheme to estimate the magnetic field gradient with N-atom spins preparing in W state. Our scheme combines the quantum multi-parameter estimation and the least square linear fitting method to achieve the quantum Cramér-Rao bound (QCRB). We show that the estimated quantity achieves the Heisenberg-scaling accuracy. Our scheme of quantum metrology combined with data fitting provides a new method in fast high precision measurements.
منابع مشابه
Wave Propagation in Rectangular Nanoplates Based on a New Strain Gradient Elasticity Theory with Considering in-Plane Magnetic Field
In this paper, on the basis of a new strain gradient elasticity theory, wave propagation in rectangular nanoplates by considering in-plane magnetic field is studied. This strain gradient theory has two gradient parameters and has the ability to compare with the nonlocal elasticity theory. From the best knowledge of author, it is the first time that this theory is used for investigating wave pro...
متن کاملQuantum phase transitions and thermodynamic properties in highly anisotropic magnets
The systems exhibiting quantum phase transitions (QPT) are investigated within the Ising model in the transverse field and Heisenberg model with easy-plane single-site anisotropy. Near QPT a correspondence between parameters of these models and of quantum φ 4 model is established. A scaling analysis is performed for the ground-state properties. The influence of the external longitudinal magneti...
متن کامل0 Structural , Electronic , and Magnetic Properties of MnO
We calculate the structural, electronic, and magnetic properties of MnO from first principles, using the full-potential linearized augmented planewave method, with both local-density and generalized-gradient approximations to exchange and correlation. We find the ground state to be of rhombohedrally distorted B1 structure with compression along the [111] direction, antiferro-magnetic with type-...
متن کاملMidgap states in antiferromagnetic Heisenberg chains with a staggered field.
We study low-energy excitations in antiferromagnetic Heisenberg chains with a staggered field which splits the spectrum into a longitudinal and a transverse branch. Bound states are found to exist inside the field induced gap in both branches. They originate from the edge effects and are inherent to spin-chain materials. The sine-Gordon scaling h(2/3)(s)[log(h(s)](1/6) (h(s), the staggered fiel...
متن کاملHeisenberg antiferromagnet
The results of a detailed histogram Monte-Carlo study of critical-fluctuation effects on the magnetic-field temperature phase diagram associated with the hexagonal Heisenberg antiferromagnet with weak axial anisotropy are reported. The multiphase point where three lines of continuous transitions merge at the spin-flop boundary exhibits a structure consistent with scaling theory but without the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014